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Models of the convergence of opinion in social systems have been the subject of considerable recent
attention in the physics literature. These models divide into two classes, those in which individuals form their
beliefs based on the opinions of their neighbors in a social network of personal acquaintances, and those in
which, conversely, network connections form between individuals of similar beliefs. While both of these
processes can give rise to realistic levels of agreement between acquaintances, practical experience suggests
that opinion formation in the real world is not a result of one process or the other, but a combination of the two.
Here we present a simple model of this combination, with a single parameter controlling the balance of the two
processes. We find that the model undergoes a continuous phase transition as this parameter is varied, from a
regime in which opinions are arbitrarily diverse to one in which most individuals hold the same opinion.
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I. INTRODUCTION

Simple mathematical models describing emergent phe-
nomena in human populations have a long history of study in
the social sciences �1�. It is only relatively recently, however,
that physicists have noted the close conceptual and math-
ematical connections between these models and traditional
models in statistical physics such as spin models. Building
on this observation, there have been a number of important
advances in the understanding of social models in the last
few years, most notably for models of social networks �2�.
Much of the work in this area has been directed at improving
our understanding of network structure but there has also
been a substantial line of investigation focusing on dynami-
cal processes on networks. One example, which has a long
history in economics and sociology but which is also well
suited to study using physics methods, is the dynamics of
opinion formation. This problem highlights one of the fun-
damental questions in network dynamics, namely, whether
the dynamics taking place on a network controls the network
structure or the structure controls the dynamics.

It is observed that real social networks tend to divide into
groups or communities of like-minded individuals �3�. An
obvious question to ask is whether individuals become like-
minded because they are connected via the network �4–10�,
or whether they form network connections because they are
like-minded �3�. Both situations have been modeled using
physics-style methods, the first with opinion formation mod-
els �4–7� and the second with models of “assortative mixing”
or “homophily” �11�. In the real world, of course, both
mechanisms may be in effect at once—the network changing
in response to opinion and opinion changing in response to
the network �12�. In this paper we study a simple model—
perhaps the simplest—that combines opinion dynamics with
assortative network formation, revealing an apparent phase
transition between regimes in which one process or the other
dominates the dynamics.

Our work is based on the voter model of opinion forma-
tion, which was independently proposed both as a model of
biological population dynamics �4� and as an iterative ver-

sion of an economic model of “public choice” �5�. The
model has substantial experimental support in both areas
�13,14�. Consider a network of N vertices, representing indi-
viduals, joined in pairs by M edges, representing active ac-
quaintances between individuals �15�. The number of edges
M is fixed, reflecting the fact that individuals can only main-
tain a limited number of connections at a given moment.
This also implies that the network is sparse: the average
number of connections an individual has is constant as N
becomes large.

Each individual is assumed to hold one of G possible
opinions on some topic of interest. The opinion of individual
i is denoted gi. In the past, researchers have considered both
cases where G is a fixed small number, such as a choice
between candidates in an election �6–8�, and cases in which
the number of possible opinions is essentially unlimited
�9,16�, so that G can be arbitrarily large. An example of the
latter might be religious belief �or lack of it�—the number of
subtly different religious beliefs appears to be limited only
by the number of people available to hold them.

The case of fixed small G has relatively simple behavior
compared to the case of arbitrarily large G, and so it is on the
latter that we focus here. We will assume that the number of
possible opinions scales in proportion to the number of indi-
viduals, and parametrize this proportionality by the ratio
�=N /G. �It is possible that not all opinions will end up ex-
isting in the population. Our model allows for some opinions
to become extinct as the dynamics evolves, so that the final
number of distinct opinions may be less than G.�

II. DEFINITION OF THE MODEL

The M edges of the network are initially placed uniformly
at random between vertex pairs, and opinions are assigned to
vertices uniformly at random. We then study by computer
simulation a dynamics in which on each step of the simula-
tion we either move an edge to lie between two individuals
whose opinions agree, or we change the opinion of an indi-
vidual to agree with the opinion of one of their neighbors. To
be specific, on each step we pick a vertex i at random. If the
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degree ki of that vertex is zero, we do nothing. Otherwise, we
do the following �see Fig. 1�.

�1� With probability �, we select at random one of the
edges attached to i and move the other end of that edge to a
vertex chosen randomly from the set of all vertices having
opinion gi.

�2� Otherwise �i.e., with probability 1−�� we pick a ran-
dom neighbor j of i and set gi equal to gj.

Step 1 represents the formation of new acquaintances be-
tween people of similar opinions. Step 2 represents the influ-
ence of acquaintances on one another, opinions becoming
similar as a result of acquaintance.

Note that both the total number of edges M in our net-
work and the total number of possible opinions G are fixed.
In the limit of large system size, the model thus has three

parameters: the average degree k̄=2M /N, the mean number
of people holding a particular opinion �=N /G, and the pa-
rameter �. In our studies, we typically keep the first two of
these parameters fixed and ask what happens as we vary the
third.

III. NUMERICAL RESULTS

The expected qualitative behavior of the model is clear.
Since both of our update moves tend to decrease the number
of nearest-neighbor vertex pairs with different opinions, we
should ultimately reach a state in which the network is di-
vided into a set of separate components, disconnected from
one another, with all members of a component holding the
same opinion. That is, the model segregates into a set of
communities such that no individual has any acquaintances
with whom they disagree. We call this the “consensus state.”
Furthermore, once we reach the consensus state, all moves in
the model involve the random rearrangement of edges within
components, and hence, in the limit of long time, the com-
ponents become random graphs with uniform uncorrelated
arrangements of their edges.

The primary interest in our model is therefore in the num-
ber and size of the communities that form and in the dynam-
ics of the model as it comes to consensus. Let us consider the
distribution P�s� of the sizes s of the consensus communities.
In the limit �→1, only updates that move edges are allowed
and hence the consensus state is one in which the communi-
ties consist of the sets of initial holders of the individual
opinions. Since the initial assignment of opinions is random,

the sizes of these sets follow the multinomial distribution, or
the Poisson distribution with mean � in the limit of large N.
Conversely, in the limit �→0, only changes of opinion are
allowed and not edge moves, which means that the commu-
nities correspond to the initial components in the graph,
which are simply the components of a random graph. As-

suming we are in the regime k̄�1 in which a giant compo-
nent exists in the random graph, we will then have one giant
�extensive� community and an exponential distribution of
small communities. Thus, in varying � we go from a situa-
tion in which we have only small communities with constant
average size � to one in which we have a giant community
plus a set of small ones. �Naturally, if the we are in the

regime k̄�1 in which no initial giant component exists, then
we will not see this behavior. Real acquaintance networks,
however, typically have average degree far above 1 and at

least one large component, so it is the k̄�1 case studied here
that is of primary interest.�

This is the classic behavior seen in a system undergoing a
continuous phase transition and it leads us to conjecture that
our model displays a phase transition with decreasing � at
which a giant community of like-minded individuals forms.
In other words, there is a transition from a regime in which
the population holds a broad variety of views to one in which
most people believe the same thing. We now offer a variety
of further evidence to support this conjecture. �Phase transi-
tion behavior is also seen in some models of opinion forma-
tion on static networks, such as the model of Ref. �10�, al-
though the mechanisms at work appear to be different from
those considered here.�

In Fig. 2 we show plots of P�s� from simulations of our

model for k̄=4 and �=10. As the figure shows, we do indeed
see a qualitative change from a regime with no giant com-
munity to one with a giant community. At an intermediate
value of � around 0.46 we find a distribution of community

FIG. 1. �Color online� An illustration of the model, with vertex
shapes representing different opinions. At each time step the system
is updated according to the process illustrated in panel �a� with
probability � or panel �b� with probability 1−�. In �a� a vertex i is
selected at random and one of its edges—in this case the edge
�i , j�—is rewired to a new vertex j� holding the same opinion as i.
In �b� vertex i adopts the opinion of one of its neighbors j.

FIG. 2. �Color online� Histograms of community sizes in the
consensus state for values of � above, at, and below the critical
point in panels �a�, �b�, and �c�, respectively. Values of the other

parameters are N=3200, M =6400 �giving k̄=4�, and �=10. In
panel �b� the distribution appears to follow a power law for part of
its range, with exponent 3.5±0.3, as indicated by the solid line.
Numerical data are averaged over 104 realizations for each value of
� and binned logarithmically.
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sizes that appears to follow a power law P�s��s−� over a
significant part of its range, another typical signature of criti-
cality. �The particular value �=0.458 is taken from the finite
size scaling analysis below. Plots for other values close to
0.46 are rather similar.� The exponent � of the power law is
measured to be 3.5±0.3, incompatible with the value 2.5 of
the corresponding exponent for the distribution of compo-
nents in a random graph at the phase transition marking the
formation of a giant component �a transition that belongs to
the mean-field percolation universality class�.

Further light can be shed on the transition in our model by
performing a finite size scaling analysis. To do this, we need
first to choose an order parameter for the model. The obvious
choice is the size S of the largest community in the consen-
sus state as a fraction of system size. The arguments above
suggest that this quantity should be of size O�N−1� �or pos-
sibly O�N−1 ln N�� for values of � above the phase transition
�and hence zero in the thermodynamic limit� and O�1� below
it. We assume a scaling relation of the form

S = N−aF�Nb�� − �c�� , �1�

where �c is the critical value of � �which is presumably a

function of k̄ and ��, F is a universal scaling function
�bounded as its argument tends to ±��, and a and b are
critical exponents. To estimate �c we plot NaS against � and
tune a such that the results for simulations at different N but

fixed k̄ and � cross at a single point, which is the critical

point. Such a plot for k̄=4 and �=10 is shown in Fig. 3�a�.
With a=0.61±0.05 we obtain a unique crossing point at
�c=0.458±0.008, which agrees well with rough estimates of
�c from histograms such as Fig. 2.

Using this value we can now determine the exponent b by
plotting NaS against Nb��−�c�. Since F�x� is a universal
function, we should, for the correct choice of b, find a data
collapse in the critical region. In Fig. 3�b� we show that such
a data collapse does indeed occur for b=0.7±0.1. We have
performed similar finite size scaling analyses for a variety of

other points �k̄ ,�� in the parameter space and, as shown in
Fig. 4, we find that the position �c of the phase transition
varies but that good scaling collapses exist in all cases for
values of the critical exponents consistent with the values
a=0.61 and b=0.7 found above.

Despite the qualitative similarities between the present
phase transition and the random graph �percolation� transi-
tion, our exponent values for a and b show that the two
transitions are in different universality classes: the corre-
sponding exponents for the random graph are a=b= 1

3 , which
are incompatible with the values measured above.

Our model differs from percolation in another important
respect also: percolation is a static, geometric phase transi-
tion, whereas the present model is fundamentally dynamic,
the consensus arising as the limiting fixed point of a converg-
ing nonequilibrium dynamics. It is interesting therefore to
explore the way in which our model approaches consensus.

In previous studies of opinion formation models of this
type on fixed networks, a key quantity of interest is the av-
erage convergence time �, which is the number of updates
per vertex needed to reach consensus. If �=0 then � is

known to scale as ��N as system size becomes large �7�. In
the opposite limit ��=1�, opinions are fixed and convergence
to consensus involves moving edges one by one to fall be-
tween like-minded pairs of individuals. This is a standard
sampling-with-replacement process in which the number U
of unsatisfied edges is expected to decay as U�Me−t/M for
large times t. Thus the time to reach a configuration in which
U=O�1� is t�M ln M, and the convergence time is this
quantity divided by the system size N. For fixed average

degree k̄=2M /N, this then implies that �� ln N. This result
is confirmed numerically in Fig. 5�a�.

For � close to �c, experience with other phase transitions
leads us to expect critical fluctuations and critical slowing
down in �. Figure 5�b� shows that indeed there are large

FIG. 3. �Color online� Finite size scaling for k̄=4 and �=10. �a�
Crossing plot used to determine the critical value �c and exponent
a. We find �c=0.458±0.008 and a=0.61±0.05. The inset shows a
blow up of the region around the critical point. �b� Scaling collapse
used to determine the exponent b, which is found to take the value
b=0.7±0.1. The data are averaged over 104 realizations for each
value of �. Error bars are shown where they are larger than the
symbol size.

FIG. 4. �Color online� Values of �c as a function of � for vari-

ous k̄ obtained by finite size scaling analyses using system sizes
N=200, 400, 800, and 1600, and 104 realizations for each size and
set of parameter values. Note that the horizontal axis is logarithmic.
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fluctuations in the convergence time in the critical region.
The figure shows the value of the coefficient of variation V�

of the consensus time �i.e., the ratio of the standard deviation
of � to its mean� as a function of � and a clear peak is visible
around �c�0.46. To characterize the critical slowing down
we assume that � takes the traditional scaling form ��Nz at
the critical point, where z is a dynamical exponent �17�. Fig-
ure 5�c� shows a plot of �N−z as a function of �. If the
system follows the expected scaling at �c then the resulting
curves should cross at the critical point. Although good nu-
merical results are considerably harder to obtain in this case
than for the community sizes presented earlier, we find that
the curves cross at a single point if z=0.61±0.15 and
�=0.44±0.03, the latter being consistent with our previous
value of �c=0.46 for the position of the phase transition.

IV. CONCLUSIONS

We have proposed a simple model for the simultaneous
formation of opinions and social networks in a situation in
which both adapt to the other. Our model contrasts with ear-
lier models of opinion formation in which social structure is
regarded as static and opinions are an outcome of that pre-
existing structure �10,18�. Our model is a dynamic, nonequi-
librium model that reaches a consensus state in finite time on
a finite network. The structure of the consensus state displays
clear signatures of a continuous phase transition as the bal-
ance between the two processes of opinion change and net-
work rewiring is varied. We have demonstrated a finite size
scaling data collapse in the critical region around this phase
transition, characterized by universal critical exponents inde-
pendent of model parameters. The approach to the consensus
state displays critical fluctuations in the time to reach con-
sensus and critical slowing down associated with an addi-
tional dynamical exponent. The phase transition in the model
is of particular interest in that it provides an example of a
simple process in which a fundamental change in social
structure can be produced by only a small change in the
parameters of the system.

Finally, we note that for the specific example of opinion
formation mentioned in the Introduction—that of choice be-
tween religions—it is known that the sizes of the communi-
ties of adherents of religious beliefs are in fact distributed,
roughly speaking, according to a power law �19�. This may
be a signature of critical behavior in opinion formation, as
displayed by the model described here, although other expla-
nations, such as the Yule process �20�, are also possible.
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